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Abstract. We make a mapping from Sierpinski fractals to a new class of networks, the incompatibility
networks, which are scale-free, small-world, disassortative, and maximal planar graphs. Some relevant
characteristics of the networks such as degree distribution, clustering coefficient, average path length, and
degree correlations are computed analytically and found to be peculiarly rich. The method of network
representation can be applied to some real-life systems making it possible to study the complexity of real
networked systems within the framework of complex network theory.

PACS. 89.75.Hc Networks and genealogical trees – 05.45.Df Fractals – 02.10.Ox Combinatorics; graph
theory – 89.75.Da Systems obeying scaling laws

1 Introduction

The main advantages of the flexibility and generality for
representing real systems have made complex networks
become a focus of attention from the scientific commu-
nity [1–5]. The empirical analysis of various real networks
has uncovered the presence of several typical properties:
scale-free nature of degree distribution [6], small-world ef-
fect including large clustering coefficient and small average
path length (APL) [7], degree correlations, i.e., the degrees
at both end points of any given edge are not usually inde-
pendent. These quantities have important effects on the
dynamical processes taking place on top of complex net-
works, such as epidemic spreading [8], percolation [9,10],
synchronization [11], and games [12].

The empirical discovery of such distinguished proper-
ties of real networks has spawned a truly cross-disciplinary
study in an effort to design models that exhibit the newly-
discovered properties, among which Watts and Strogatz’s
(WS) small-world network model [7] and Barabási and
Albert’s (BA) scale-free network model [6] are the most
well-known. Enlightened by the two pioneering mod-
els [6,7], a wide variety of models has been proposed
resulting in great progresses in the research of network
topology [13–22]. Thanks to both the advances in net-
work theory and the increasing amount of network data
available, authors are beginning to reveal many different
processes that may lead to above striking generic charac-

a e-mail: zhangzz@fudan.edu.cn
b e-mail: sgzhou@fudan.edu.cn

teristics. It is of current interest to model complex net-
works with general structural features [1–4].

In this paper, on the basis of the famous determinis-
tic fractal — Sierpinski gasket, we introduce for the first
time a family of nontrivial networks, named incompatibil-
ity networks (INs). This new family of networks, can be ei-
ther determinist or stochastic, are maximal planar graphs,
show scale-free degree distribution, exhibit small-world ef-
fect, and display disassortative degree-degree correlations.
These incompatibility networks provide a paradigm of rep-
resentation for the complexity of many real systems in bi-
ological and information fields, which have been studied
to a much lesser extent from the perspective of IN.

2 Network construction

To define the network, we first introduce the classical frac-
tal, Sierpinski gasket, also known as Sierpinski triangle.
This well-known fractal denoted as St after t generations,
is constructed as follows [23,24]: start with an equilateral
triangle, and denote this initial configuration as S0. Per-
form a bisection of the sides forming four small copies of
the original triangle, and remove the interior triangles to
get S1. Repeat this procedure recursively in the three re-
maining copies to obtain S2, shown in Figure 1. In the
infinite t limit, we obtain the famous Sierpinski gasket
St, whose Hausdorff dimension is df = ln 3

ln 2 [25]. In fact,
this fractal can be generalized to other dimensions and
expanded to random cases [26].
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Fig. 1. The first two stages in the construction of the Sierpinski
triangle.

Fig. 2. The first two steps of construction of incompatibility
network.

From Sierpinski gasket we can easily construct a net-
work with sides of the removed triangles mapped to nodes
and contact to edges between nodes. For uniformity, the
three sides of the initial equilateral triangle of S0 also cor-
respond to three different nodes. Since the resulting net-
work shown in Figure 2 is associated with contact relation,
we call it an incompatibility network (IN). Analogously,
one can establish a class of INs related to this family of
Sierpinski fractals [26].

This introduced network representation is convenient
for studying the complexity of some real systems and may
have wider applicability. For instance, a similar recipe was
recently adopted for investigating the navigational com-
plexity of cities [27]; on the other hand, it is frequently
used in RNA folding research [28,29]; moreover, earlier
links associating INs with polymers have proven useful to
the study of polymer physics [30,31], thus IN may find ap-
plication in investigating the complexity of traveling sales-
man problems (TSP) that has been conjectured to belong
to the same universality class as dense polymers [32].

3 Iterative algorithm of the network

In the construction process of the classical Sierpinski
gasket, for each equilateral triangle at arbitrary genera-
tion, once we perform a bisection of its sides and remove
the central down pointing triangle, three copies of it are
formed. When building the network, it is equivalent that
for every group of three new added nodes, three new small

Fig. 3. (Color online) Iterative construction method for the
network.

equilateral triangles are generated, each of which may cre-
ate three nodes in the next generation. According to this,
we can introduce a general algorithm to create the cor-
responding network, denoted by H(t) after t generation
evolutions.

The iterative algorithm for the network is as follows:
for t = 0, H(0) consists of three nodes forming a triangle.
Then, we add three nodes into the original triangle. These
three new nodes are linked to each other shaping a new
triangle, and both ends of each edge of the new triangle
are connected to a node of the original triangle. Thus we
get H(1), see Figure 3. For t ≥ 1, H(t) is obtained from
H(t − 1). For each of the existing triangles of H(t − 1)
that is created at step t − 1 and contains only one newly
emerging node at this step, we call it an active triangle.
We replace each of the existing active triangles of H(t−1)
by the connected cluster on the right hand of Figure 3
to obtain H(t). The growing process is repeated until the
network reaches a desired order (node number of network).
Figure 2 shows the network growing process for the first
two steps.

Next we compute the order and size (number of all
edges) of the network H(t). Let Lv(t), Le(t) and L∆(t) be
the number of vertices, edges and active triangles created
at step t, respectively. By construction (see also Fig. 3),
each active triangle in H(t − 1) will be replaced by three
active triangles in H(t). Thus, it is not difficult to find the
following relation: L∆(t) = 3 L∆(t − 1). Since L∆(0) = 1,
we have L∆(t) = 3t.

Note that each active triangle in H(t − 1) will lead
to an addition of three new nodes and nine new edges at
step t, then one can easily obtain the following relations:
Lv(t) = 3 L∆(t − 1) = 3t, and Le(t) = 9 L∆(t − 1) = 3t+1

for arbitrary t > 0. From these results, we can compute
the order and size of the network. The total number of
vertices Nt and edges Et present at step t is

Nt =
t∑

ti=0

Lv(ti) =
3t+1 + 3

2
(1)

and

Et =
t∑

ti=0

Le(ti) =
3t+2 − 3

2
, (2)

respectively. So for large t, the average degree kt = 2Et

Nt

is approximately 6, which shows the network is sparse as
most real systems.

From equations (1) and (2), we have Et = 3Nt − 6. In
addition, by the very construction of the network, it is
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obvious that arbitrary two edges in the network never
cross each other. Thus our network is a maximal planar
network (or graph) [33], which is similar to some previ-
ously studied networks [34–38].

4 Topological properties of the network

Now we study some relevant characteristics of the net-
work H(t), focusing on degree distribution, clustering co-
efficient, average path length, and degree correlations.

4.1 Degree distribution

When a new node i is added to the network at step ti (ti ≥
1), it has a degree of 4. Let L∆(i, t) be the number of active
triangles at step t that will create new nodes connected to
the node i at step t+1. Then at step ti, L∆(i, ti) = 1. From
the iterative generation process of the network, one can see
that at any subsequent step each two new neighbors of i
generate two new active triangles involving i, and one of
its existing active triangles is deactivated simultaneously.
We define ki(t) as the degree of node i at time t, then the
relation between ki(t) and L∆(i, t) satisfies:

L∆(i, t) =
ki(t) − 2

2
. (3)

Now we compute L∆(i, t). By construction, L∆(i, t) =
2 L∆(i, t−1). Considering the initial condition L∆(i, ti) =
1, we can derive L∆(i, t) = 2t−ti . Then at time t, the de-
gree of vertex i becomes

ki(t) = 2t−ti+1 + 2. (4)

It should be mentioned that the initial three vertices cre-
ated at step 0 have a little different evolution process from
other ones. We can easily obtain that at step t, the degree
of one of the initial three vertices and the number of active
triangles involving it are 2t+1 and 2t, respectively.

Equation (4) shows that the degree spectrum of the
network is discrete. It follows that the cumulative degree
distribution [3] is given by

Pcum(k) =
∑

τ≤ti

Lv(τ)
Nt

=
3ti+1 + 3
3t+1 + 3

. (5)

Substituting for ti in this expression using ti = t + 1 −
ln(k−2)

ln 2 gives

Pcum(k) =
3t+1(k − 2)−(ln 3/ ln 2) + 3

3t+1 + 3
. (6)

When t is large enough, one can obtain

Pcum(k) = (k − 2)−(ln 3/ ln 2). (7)

So the degree distribution follows a power law form with
the exponent γ = 1+ ln 3

ln 2 . Note that the same degree expo-
nent has been obtained in some other deterministic models
such as Apollonian networks [34,35,38] and pseudofractal
scale-free web [39–41].

Fig. 4. Semilogarithmic plot of average clustering coefficient
Ct versus network order Nt.

4.2 Clustering coefficient

The clustering coefficient [7] of a node i with degree ki is
given by Ci = 2ei/[ki(ki − 1)], where ei is the number of
existing edges among the ki neighbors. Using the connec-
tion rules, it is straightforward to calculate analytically
the clustering coefficient C(k) for a single node with de-
gree k. When a node is added into the network, both ki

and ei are 4. At each subsequent discrete time step, each
of its active triangles increases both ki and ei by 2 and 3,
respectively. Thus, ei = 4 + 3

2 (ki − 4) for all nodes at all
steps. So there is a one-to-one correspondence between the
clustering coefficient of a node and its degree. For a node
of degree k, we have

C(k) =
2
[
4 +

3
2
(k − 4)

]

k(k − 1)
=

4
k
− 1

k − 1
, (8)

which is inversely proportional to k in the limit of large
k. The scaling of C(k) ∼ k−1 has been observed in many
real-world scale-free networks [42].

After t generation evolutions, the clustering coefficient
Ct of the network, defined as the average of C

′
is over all

nodes in the network, is given by

Ct =
1
Nt

t∑

r=0

[(
4

Kr
− 1

Kr − 1

)
Lv(r)

]
, (9)

where the sum runs over all the nodes and Kr is the degree
of those nodes created at step r, which is given by equa-
tion (4). In the limit of large Nt, equation (9) converges
to a nonzero value C = 0.5745, as shown in Figure 4.
Therefore, the network is highly clustered.

4.3 Average path length

Shortest paths play an important role both in the trans-
port and communication within a network and in the char-
acterization of the internal structure of the network. We
represent all the shortest path lengths of H(t) as a matrix
in which the entry guv is the geodesic path from node u to



262 The European Physical Journal B

Fig. 5. Alternative construction of Sierpinksi network. Ht+1

on the right may obtained by the juxtaposition of three copies

of Ht denoted as H
(ϕ)
t (ϕ = 1, 2, 3).

node v, where geodesic path is one of the paths connect-
ing two nodes with minimum length. A measure of the
typical separation between two nodes in H(t) is given by
the average path length d̄t, also known as characteristic
path length, defined as the mean of geodesic lengths over
all couples of nodes. Thus

d̄t =
Dt

Nt(Nt − 1)/2
, (10)

where Dt denotes the sum of the total distances between
two nodes over all pairs, that is

Dt =
∑

u,v∈Ht

gu,v . (11)

We can exactly calculate d̄t. As shown in Figure 5, in addi-
tion to the above-mentioned iterative algorithm, H(t + 1)
may be obtained by the juxtaposition of three copies of
Ht, which we label H

(ϕ)
t , ϕ = 1, 2, 3. Thus, network H(t)

has a self-similar structure [43] which allows one to an-
alytically compute the average path length d̄t of H(t).
Then the total distance Dt+1 satisfies the recursion re-
lation Dt+1 = 3 Dt + Θt, where Θt is the sum over all
shortest paths whose endpoints are not in the same Ht

branch. The solution of Dt is

Dt = 3t−1 D1 +
t−1∑

m=1

(
3t−m−1Θm

)
. (12)

The paths that contribute to Θt must all go through at
least one of the six edge nodes (i.e. A (A1, A3), B (B1, B2),
C (C2, C3), A2, B3, and C1). To calculate Θt, we classify
the interior nodes (excluding A, B, and C themselves) in
Ht into six different sets P1, P2, · · · , P6, which are shown
in Figure 6. Denote the shortest path lengths from v to
A, B, C as x, y, and z, the classification of any node v
is P1 : x < y = z, P2 : y < x = z, P3 : z < x = y,
P4 : x = z < y, P5 : x = y < z, and P6 : y = z < x. Denote
Nt,Pr the number of nodes in network Ht belonging to Pr,
dt,Pr the sum of fv over all nodes belonging to Class Pr

in Ht, where fv = min{x, y, z} for any node v in Ht. Then

Fig. 6. Illustration of the classification of nodes in H
(1)
t , H

(2)
t ,

and H
(3)
t .

Θt can be expressed as [44]

Θt = 3
6∑

i=1

6∑

j=1

(
Nt−1,Pj dt−1,Pi + Nt−1,Pi dt−1,Pj

+ Nt−1,Pi Nt−1,Pj δij

)
+ 9

6∑

i=1

dt−1,Pi

+ 18 Nt−1,P1 + 9 Nt−1,P4 + 9 Nt−1 − 18, (13)

where δij may equal to either 0 or 1, depending on whether
the paths between two nodes in different H(t−1) branches
meet at one or two edge nodes. In equation (13), we have
used the following equivalent relations: Nt,P1 = Nt,P2 =
Nt,P3 , Nt,P4 = Nt,P5 = Nt,P6 , dt,P1 = dt,P2 = dt,P3 , and
dt,P4 = dt,P5 = dt,P6 , which are easily obtained according
to the network construction.

Clearly, Nt = 3 Nt,P1+3 Nt,P4+3. When merging three
Ht into a Ht+1, one can obtain the recursive relations (see
Fig. 6):

{
Nt+1,P1 = 2 Nt,P1 + 2 Nt,P4,

Nt+1,P4 = Nt,P1 + Nt,P4 + 1,
(14)

and
{

dt+1,P1 = 2 dt,P1 + 2 dt,P4 ,

dt+1,P4 = dt,P1 + dt,P4 + Nt,P1 + 1.
(15)

Considering the initial conditions N1,P1 = 0, N1,P4 = 1,
d1,P1 = 0, and d1,P4 = 1, equations (14) and (15) are
solved inductively to obtain

⎧
⎨

⎩

Nt,P1 = 3t−1 − 1,

Nt,P4 =
1
6
(3 + 3t),

(16)

and
{

dt,P1 = 2 × 3t−3(1 + t),

dt,P4 = 3t−2 + 3t−3(1 + t),
(17)

which hold for all t ≥ 2.
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Combine all the prior equations, the exact solution of
APL can be obtained as

d̄t =
27 + 22 × 31+t + 91 × 9t + 4 × 31+t(31+t − 2)t

27 + 4 × 33+t + 92+t
.

(18)
This analytic result has been successfully checked against
numerical calculations for different network order up to
t = 9 which corresponds to N10 = 29 526. From equa-
tion (18), it is clear that the scaling of APL in the infi-
nite limit of network order is d̄t ∝ ln Nt. This logarithmic
scaling of dt with network size Nt, together with the large
clustering coefficient obtained in the preceding subsection,
shows that the considered graph has a small-world effect.

4.4 Degree correlations

Degree correlation is a particularly interesting subject in
the field of network science [45–50], because it can give
rise to some interesting network structure effects. An in-
teresting quantity related to degree correlations is the av-
erage degree of the nearest neighbors for nodes with degree
k, denoted as knn(k), which is a function of node degree
k [46,47]. When knn(k) increases with k, it means that
nodes have a tendency to connect to nodes with a sim-
ilar or larger degree. In this case the network is defined
as assortative [48,49]. In contrast, if knn(k) is decreasing
with k, which implies that nodes of large degree are likely
to have near neighbors with small degree, then the net-
work is said to be disassortative. If correlations are absent,
knn(k) = const.

We can exactly calculate knn for the networks us-
ing equations (3) and (4) to work out how many links
are made at a particular step to nodes with a particu-
lar degree. By construction, we have the following expres-
sion [51,52]

knn(k) =
1

Lv(ti)k(ti, t)

( t′i=ti−1∑

t′i=0

2Lv(t′i)L∆(t′i, ti−1)k(t′i, t)

+
t′i=t∑

t′i=ti+1

2Lv(ti)L∆(ti, t′i − 1)k(t′i, t)

)
+ 2 (19)

for k = 2t−ti+1 + 2 and where k(ti, t) is the degree of a
node i at time t that was born at step ti. Here the first
sum on the right-hand side accounts for the links made to
nodes with larger degree (i.e. t′i < ti) when the node was
generated at ti. The second sum describes the links made
to the current smallest degree nodes at each step t′i > ti.
The last term 2 accounts for the two links connected to
two simultaneously emerging nodes. After some algebraic
manipulations, we can rewrite equation (19) in term of k
to obtain

knn(k) =

[
8
(

4
3

)t − 4
(

2
3

)t] (k − 2)ln 3/ ln 2

k(k − 2)

+
6
k

+
(

1 − 2
k

)
ln(k − 2)

ln 2
− 1. (20)

Therefore, for large t and k, knn(k) is approximately a
power law function of k as knn(k) ∼ k−ω with ω =
2− ln 3

ln 2 � 0.415, which shows that the network is disassor-
tative. Note that knn(k) of the Internet exhibit a similar
power-law scaling with exponent ω = 0.5 [46].

5 Conclusion

In conclusion, based on the of Sierpinski gasket, we have
introduced a class of incompatibility networks. According
to the network construction we have proposed a generative
algorithm creating the networks. We have shown that the
networks share some important properties of real systems:
power-law degree distribution, small-world effect, and neg-
ative degree correlations. In addition, the networks are
maximal planar graphs, which may be helpful for design-
ing printed circuits [33].

The connection between Sierpinski fractals and incom-
patibility networks investigated here could reveal impor-
tant also in other related problems. One can use a similar
mapping from road map of cities to the INs to quan-
tify the information associated with locating specific ad-
dresses [27]. Another possible connection is to the TSP,
the corresponding IN could serve as a checkpoint for the
conjectured correspondence with dense polymers [32]. One
can also establish link from a globular biopolymer, e.g. a
folded protein, to an IN to study the complexity of real
biological systems [31].

This research was supported by the National Basic Research
Program of China under grant No. 2007CB310806, the Na-
tional Natural Science Foundation of China under Grant
Nos. 60496327, 60573183, 90612007, 60773123, and 60704044,
the Postdoctoral Science Foundation of China under Grant
No. 20060400162, the Program for New Century Excellent Tal-
ents in University of China (NCET-06-0376), and the Huawei
Foundation of Science and Technology (YJCB2007031IN).

References

1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)
2. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079

(2002)
3. M.E.J. Newman, SIAM Review 45, 167 (2003)
4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavezf, D.-U.

Hwanga, Phy. Rep. 424, 175 (2006)
5. L.da.F. Costa, F.A. Rodrigues, G. Travieso, P.R.V. Boas,

Adv. Phys. 56, 167 (2007)
6. A.-L. Barabási, R. Albert, Science 286, 509 (1999)
7. D.J. Watts, H. Strogatz, Nature (London) 393, 440 (1998)
8. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86,

3200 (2001)
9. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts,

Phys. Rev. Lett. 85, 5468 (2000)
10. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev.

Lett. 86, 3682 (2001)
11. M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89, 054101

(2002)



264 The European Physical Journal B
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